課題:圓柱的體積
課型:新授 六年級數(shù)學(xué)組
學(xué)案 教案
活動一 、熱身運動
1、寫出長方體、正方體的計算公式。
長方體的體積=
正方體的體積=
2 、回憶圓的面積的推導(dǎo)過程。
轉(zhuǎn)化成
圓-------( )
活動二 、我們的會議廳
主題:如果圓柱可以轉(zhuǎn)化,能轉(zhuǎn)化成什么立體圖形?怎樣轉(zhuǎn)化?怎樣由轉(zhuǎn)化出的立體圖形的推出圓柱的體積公式?
操作:利用學(xué)具驗證想法是否可行
寫下不明或卡殼的地方
活動三、 向課本老師學(xué)習(xí)
帶著疑問和思考自學(xué)課本第10頁
填空 寫出圓柱與拼成的長方體的三處相同,討論出公式。思考計算圓柱的體積必須知道哪些條件?
圓柱的( )=長方體的( )
圓柱的( )=長方體的( )
圓柱的( )=長方體的( )
圓柱的體積=( )
活動四、 我們的收獲
我們這個小組學(xué)到了什么,還有什么疑惑。
活動五 、沙場大練兵
1
2
3 一個高5厘米的圓柱體,沿底面直徑將圓柱體鋸成兩塊,其表面積增加40平方厘米,原來這個圓柱體的體積是( ).
活動六、 我的地盤我做主
我來出題:
交換解答
新課標(biāo)第一網(wǎng)
活動七:自我反思
今天我學(xué)習(xí)了( ),我以后要注意( )。我還想學(xué)( ),我打算這樣去學(xué)( )。 教學(xué)目標(biāo):
1知識目標(biāo):在切割圓柱體,拼成近似的長方體的過程后,能推導(dǎo)出圓柱的體積公式。
2能力目標(biāo):能運用推導(dǎo)出的體積公式解決實際問題。
3情感目標(biāo):感知數(shù)學(xué)轉(zhuǎn)化思想的魅力,自我探索中獲得成功體驗。
一 復(fù)習(xí)以下知識。
正方體的體積計算公式推導(dǎo)
圓的面積推導(dǎo)
二 討論5分鐘
三 自學(xué)課本
完成學(xué)案項目
教師下組指導(dǎo)看書,了解各組學(xué)習(xí)情況,重點指導(dǎo)學(xué)困生。
四 全班匯報
其他學(xué)生認(rèn)真聽,可以質(zhì)疑,可以表示贊同,可以補充,對發(fā)言的同學(xué)作出評價
師總結(jié)
五檢測與反饋
完成當(dāng)堂檢測及點評
六 學(xué)生互出題
生總結(jié)本課學(xué)習(xí)情況
教學(xué)反思:
[教學(xué)反思]
一、創(chuàng)設(shè)最佳的學(xué)習(xí)情境,讓學(xué)生學(xué)到有價值的數(shù)學(xué)。我這節(jié)課的教學(xué)是通過觀察、猜想、操作驗證、鞏固、應(yīng)用這幾個環(huán)節(jié)來完成的。這樣的教學(xué)流程有助于學(xué)生學(xué)會用圓柱的體積計算公式計算圓柱形物體的體積或容積的前提下,學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)方法,并能很好地解決生活中的數(shù)學(xué)問題,教師的引導(dǎo)行之有效。學(xué)生在通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的。在課中教師只是為學(xué)生的學(xué)習(xí)假設(shè)情景,所有的知識不是老師告訴的,而是學(xué)生在探索中發(fā)現(xiàn),并自己總結(jié)出來的。
二、展示知識的獲取過程,讓學(xué)生在參與中學(xué)習(xí)。新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。操作驗證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動教學(xué)中學(xué)生“主動探索”的特點,我從問題入手,組織學(xué)生圍繞觀察猜想后展開驗證性的操作活動。學(xué)生以活動小組為單位根據(jù)問題進(jìn)行驗證。從活動反饋情況來看,活動效果較好,學(xué)生思維活躍,方法頗有創(chuàng)意。這不僅經(jīng)歷了知識產(chǎn)生的過程,而且加深了學(xué)生對圓柱的體積計算公式推導(dǎo)過程的理解,并領(lǐng)悟了學(xué)習(xí)方法,還培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力,從而促進(jìn)了學(xué)生的思維發(fā)展。
三、設(shè)計多樣性與遞進(jìn)性練習(xí),培養(yǎng)學(xué)生思維的深度 學(xué)習(xí)本身是一個不斷歸納概括、演繹應(yīng)用的過程。在教學(xué)中,我讓學(xué)生經(jīng)過探索獲取知識、掌握方法后,安排了幾個生活中的具體問題,讓學(xué)生去解決。由于“練一練”中的題目都比較淺顯,學(xué)生容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我充分利用了IP資源中 “習(xí)題精選”、“典型例題”中的資源。注重習(xí)題的多樣化、層次化來拓展學(xué)生思維,從而培養(yǎng)學(xué)生思維的深度。在鞏固練習(xí)中,我運用以下五種類型:1.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。 2.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr瞙。 3.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)瞙。 4.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)瞙。 5.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)瞙。并以填空、選擇、判斷、看圖計算、應(yīng)用題等練習(xí)方式對學(xué)生進(jìn)行了由易到難的訓(xùn)練。同時提出思考性問題讓學(xué)生課余去思考,使課堂學(xué)習(xí)向課外探究延伸。