復數(shù)中的難點
。1)復數(shù)的向量表示法的運算。對于復數(shù)的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難。對此應認真體會復數(shù)向量運算的幾何意義,對其靈活地加以證明。
(2)復數(shù)三角形式的乘方和開方。有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練。
(3)復數(shù)的輻角主值的求法。
。4)利用復數(shù)的幾何意義靈活地解決問題。復數(shù)可以用向量表示,同時復數(shù)的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會。
3。復數(shù)中的重點
。1)理解好復數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的不同點。
(2)熟練掌握復數(shù)三種表示法,以及它們間的互化,并能準確地求出復數(shù)的模和輻角。復數(shù)有代數(shù),向量和三角三種表示法。特別是代數(shù)形式和三角形式的互化,以及求復數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容。
。3)復數(shù)的三種表示法的各種運算,在運算中重視共軛復數(shù)以及模的有關性質。復數(shù)的運算是復數(shù)中的主要內(nèi)容,掌握復數(shù)各種形式的運算,特別是復數(shù)運算的幾何意義更是重點內(nèi)容。
。4)復數(shù)集中一元二次方程和二項方程的解法。